23 research outputs found

    Synthesis of Subject-Specific Human Balance Responses using a Task-Level Neuromuscular Control Platform

    Get PDF
    Many activities of daily living require a high level of neuromuscular coordination and balance control to avoid falls. Complex musculoskeletal models paired with detailed neuromuscular simulations complement experimental studies and uncover principles of coordinated and uncoordinated movements. Here, we created a closed-loop forward dynamic simulation framework that utilizes a detailed musculoskeletal model (19 degrees of freedom, and 92 Muscles) to synthesize human balance responses after support-surface perturbation. In addition, surrogate response models of task-level experimental kinematics from two healthy subjects were provided as inputs to our closedloop simulations to inform the design of the task-level controller. The predicted muscle EMGs and the resulting synthesized subject joint angles showed good conformity with the average of experimental trials. The simulated whole-body center of mass displacements, generated from a single kinematics trial per perturbation direction, were on average, within 7 mm (anterior perturbations) and 13 mm (posterior perturbations) of experimental displacements. Our results confirmed how a complex subject-specific movement can be reconstructed by sequencing and prioritizing multiple task-level commands to achieve desired movements. By combining the multidisciplinary approaches of robotics and biomechanics, the platform demonstrated here offers great potential for studying human movement control and subject-specific outcome prediction

    The conventional gait model - success and limitations

    Get PDF
    The Conventional Gait Model (CGM) is a generic name for a family of closely related and very widely used biomechanical models for gait analysis. After describing its history, the core attributes of the model are described followed by evaluation of its strengths and weaknesses. An analysis of the current and future requirements for practical biomechanical models for clinical and other gait analysis purposes which have been rigorously calibrated suggests that the CGM is better suited for this purpose than any other currently available model. Modifications are required, however, and a number are proposed
    corecore